きゅーてー!!!

病むのはやめた!!!

【院試問題】物理数学(2019東北大学工学・応用物理学専攻)

解いてみた。

過去問はこちらより入手可。 

 

過去問のリンク(上のリンクと同じ)↓

 

問題のテーマ

回転(rot)の計算とフーリエ変換の具体的な計算をする。特に考えることはなく計算のみ。

キーワード

目次

(1) 回転(\(\mathrm{rot}\))の計算

(a) \(\vec{A}=\vec{p}\times \vec{r}\)の回転

\begin{equation*} \vec{A} = \vec{p}\times\vec{r} = \left( \begin{array}{c} 0 \\ 0 \\ p \end{array} \right) \times \left( \begin{array}{c} x \\ y \\ z \end{array} \right) = \left( \begin{array}{c} -py \\ px \\ 0 \end{array} \right) \end{equation*} であるから \begin{equation*} \mathrm{rot}\,{\vec{A}} = \left( \begin{array}{c} 0 \\ 0 \\ p-(-p) \end{array} \right) = \boxed{\left( \begin{array}{c} 0 \\ 0 \\ 2p \end{array} \right)} \end{equation*}

(b) \(\vec{B}=r^2\vec{r}\)の回転

\begin{equation} \mathrm{rot}\vec{B} = \left( \begin{array}{c} \frac{\partial(r^2z)}{\partial y}-\frac{\partial(r^2y)}{\partial z} \\[8pt] \frac{\partial(r^2x)}{\partial z}-\frac{\partial(r^2z)}{\partial x} \\[8pt] \frac{\partial(r^2y)}{\partial x}-\frac{\partial(r^2x)}{\partial y} \end{array} \right) = 2r\left( \begin{array}{c} \frac{\partial r}{\partial y}z-\frac{\partial r}{\partial z}y \\[8pt] \frac{\partial r}{\partial z}x-\frac{\partial r}{\partial x}z \\[8pt] \frac{\partial r}{\partial x}y-\frac{\partial r}{\partial y}x \end{array} \right) \tag{1}\label{eq1} \end{equation} ここで \begin{equation*} \frac{\partial r}{\partial x} = \frac{\partial}{\partial x}(x^2+y^2+z^2)^{\frac{1}{2}} = \frac{1}{2}(x^2+y^2+z^2)^{-\frac{1}{2}}\cdot 2x =\frac{x}{r} \end{equation*} 同様にして \begin{equation*} \frac{\partial r}{\partial y}=\frac{y}{r},\quad\frac{\partial r}{\partial z}=\frac{z}{r} \end{equation*} これらを\eqref{eq1}式に代入して \begin{equation*} \mathrm{rot}\,\vec{B} = 2r\left( \begin{array}{c} \frac{y}{r}z-\frac{z}{r}y \\[8pt] \frac{z}{r}x-\frac{x}{r}z \\[8pt] \frac{x}{r}y-\frac{y}{r}x \end{array} \right) = 2\left( \begin{array}{c} yz-zy \\ zx-xz \\ xy-yx \end{array} \right) = \boxed{\vec{0}} \end{equation*}

(c) \(\vec{C} = \mathrm{grad}\,\varphi\)の回転

\begin{align*} \mathrm{rot}\,\vec{C}&=\nabla\times(\nabla\cdot\varphi) =\nabla\times\left( \begin{array}{c} \frac{\partial\varphi}{\partial x} \\[8pt] \frac{\partial\varphi}{\partial y} \\[8pt] \frac{\partial\varphi}{\partial z} \end{array} \right) =\left( \begin{array}{c} \frac{\partial}{\partial y}\left(\frac{\partial\varphi}{\partial z}\right)-\frac{\partial}{\partial z}\left(\frac{\partial\varphi}{\partial y}\right) \\[8pt] \frac{\partial}{\partial z}\left(\frac{\partial\varphi}{\partial x}\right)-\frac{\partial}{\partial x}\left(\frac{\partial\varphi}{\partial z}\right) \\[8pt] \frac{\partial}{\partial x}\left(\frac{\partial\varphi}{\partial y}\right)-\frac{\partial}{\partial y}\left(\frac{\partial\varphi}{\partial x}\right) \end{array} \right) =\left( \begin{array}{c} \frac{\partial^2\varphi}{\partial y\partial z}-\frac{\partial^2\varphi}{\partial z\partial y} \\[8pt] \frac{\partial^2\varphi}{\partial z\partial x}-\frac{\partial^2\varphi}{\partial x\partial z} \\[8pt] \frac{\partial^2\varphi}{\partial x\partial y}-\frac{\partial^2\varphi}{\partial y\partial x} \end{array} \right) \end{align*} よって \begin{equation*} \mathrm{rot}\,\vec{C}=\boxed{\vec{0}} \end{equation*}

 

(2) 球対称分布関数のフーリエ変換

\begin{align*} F(\vec{q}) &= \int\rho(r)\exp{(-i\vec{q}\cdot\vec{r})}dV \\[8pt] &=\int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{\infty}\rho(r)\exp{(-i\vec{q}\cdot\vec{r})}r^2\sin{\theta}drd\theta d\phi \end{align*} である。 ベクトル\(\vec{q}\)の向きに、\(xyz\)空間における\(z\)軸をとれば \begin{equation*} \vec{q}\cdot\vec{r} = |\vec{q}|r\cos{\theta} \end{equation*} と表せるので、 \begin{align*} F(\vec{q}) &= \int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{\infty}\rho(r)\exp{\left[i|\vec{q}|r(-\cos{\theta})\right]}r^2\frac{d(-\cos{\theta})}{d\theta}drd\theta d\phi \\[8pt] &= 2\pi\int_{0}^{\infty}\rho(r)r^2\left[\frac{1}{i|\vec{q}|r}\exp{\left(-i|\vec{q}|r\cos{\theta}\right)}\right]_{\theta=0}^{\theta=\pi}dr \\[8pt] &= \frac{2\pi}{i}\int_{0}^{\infty}\rho(r)r\frac{\mathrm{e}^{i|\vec{q}|r}-\mathrm{e}^{-i|\vec{q}|r}}{|\vec{q}|}dr \\[8pt] &= \frac{2\pi}{i}\int_{0}^{\infty}\rho(r)r\frac{2i\sin{|\vec{q}|r}}{|\vec{q}|}dr \\[8pt] &= 4\pi\int_{0}^{\infty}\rho(r)r^2\frac{\sin{|\vec{q}|r}}{|\vec{q}|r}dr \end{align*} \(|\vec{q}|\)と\(r\)は独立なので \begin{align*} \lim_{|\vec{q}|\rightarrow0}F(\vec{q}) &= 4\pi\int_{0}^{\infty}\rho(r)r^2\lim_{|\vec{q}|\rightarrow0}\left(\frac{\sin{|\vec{q}|r}}{|\vec{q}|r}\right)dr \\[8pt] &= 4\pi\int_{0}^{\infty}\rho(r)r^2dr \\[8pt] &= 4\pi Z \quad \propto \quad Z \end{align*} これにより\(\lim_{|\vec{q}|\rightarrow0}F(\vec{q})\)が\(Z\)に比例することが示された。